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Abstract

Providing a structured graphics model and a constraint system makes the programming of graphical
applications significantly easier. In a structured graphics model, each graphic element on the screen is
represented by a real object in the object system, while a constraint system automatically maintains
relationships among the objects. Although many research systems and a few commercial environments
provide structured graphics and constraints, none scale up to large interfaces with thousands of objects
and thousands of constraints. This paper presents four techniques to overcome this problem: automatic
elimination of constraints that depend only on values that do not change, layout hints to help with refresh
and hit detection, "virtual aggregates" that only pretend to allocate objects for their components, and
compiling composite aggregates into a single object with a complex draw method. These have been
implemented as part of the Garnet environment, and we have demonstrated that together they allow
structured graphics and constraints to scale up to applications with tens of thousands of objects and
constraints without compromising the ease-of-use.
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1. Introduction

The Garnet user interface development environment [Myers 90a] requires developers to use a
"structured graphics model," where each object on the screen is represented by an object in

memory, and "constraints," which are relationships that are defined once and then maintained

by the system. As Garnet was used to develop ever larger applications, efficiency problems with

these features became apparent. In particular, we had always worked hard to increase the time

efficiency of the system, but the space efficiency turned out to equally as important. In fact, for

large applications, swapping time dominated the execution time, so the space problem negated

the time improvements. This paper describes the new features that allow structured graphics and

constraints to be used for significant, large-scale applications such as CAD and scientific

visualization, which involve tens of thousands of objects and hundreds of thousands of

constraints. Although described in the context of the Garnet system, the techniques are

applicable to all structured graphics and constraint systems.

The Garnet toolkit promotes a declarative style of programming [Myers 92] where the

programmer lists the desired results, but does not describe the process to achieve those results as

in conventional procedural programming. For example, programmers create objects in Garnet

but rarely need to write new methods for them. The advantage of this declarative style of

programming is that the specification is easier to generate for both programmers and interactive

tools.

The primary contributors to this style are a novel input model, a structured graphics model,

and an integrated constraint model. These features are provided at the lowest level and are used

by all Garnet code, including the widget set (such as the buttons, menus and scrollbars). The

input model is extensively described in another paper [Myers 90b] and is not further discussed

here.

"Structured graphics" is sometimes also called a "retained object model" or "display list."

The advantage of this model is that the programmer is freed of all graphical maintenance tasks.

For example, to change the color of an object, the programmer sets the color parameter and the

system automatically redraws the object. Furthermore, the system will redraw any other objects

on the screen that intersect the object to restore the correct picture. Furthermore, if the window

manager requests that the window be redrawn, perhaps because it was de-iconified or uncovered,
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the structured graphics system can handle this without involving the application at all. A

structured graphics model also makes it possible to provide high-level services in the toolkit,

including printing, saving and reading objects from files, cut/copy/paste/duplicate and other

edits, and graphical selection handles. While other frameworks require the programmer to

override the standard methods for these functions, a structured graphics model usually allows the

programmer to use the library functions without change. Despite these advantages, most systems

do not require (or even provide) a structured graphics model and the reason is obvious: the

significant space overhead of storing all the objects.

"-'be

Figure 1: A text button in its normal and selected states.

This paper presents three innovations that make structured graphics practical. The first allows

the programmer to give "layout hints" which make hit detection (which object is under the

mouse) and redrawing decisions (which objects intersect with the rectangle to be redrawn) much

more efficient. The second innovation supports the common situations where there are a large

number of basically similar objects that differ only in a few properties. Examples are the squares

in a pixmap editor (that differ only in their color), the lines on a map (that differ in their

placement), and the circles in a visualization (that differ in their placement and color). For these,

Garnet provides "virtual aggregates" that only pretend to allocate objects for the components.

In the Garnet structured graphics model, collections of objects can be grouped into an
"aggregate," and when instances are made of the aggregate, Garnet will make instances of each

component. The third innovation allows an aggregate composed of a small collection of

disparate objects to be collapsed into a single object. For example, the button in Figure 1 is

composed of three rectangles and a string. Interactive editors such as Lapidary [Myers 89] or the

declarative system of Garnet [Myers 92] make it easy to create and edit the button itself, but

since there might be hundreds of buttons in an application, the overhead of the four primitive

objects is significantly multiplied. Therefore, Garnet provides a function that eliminates the
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primitive objects by creating a custom Draw method equivalent to what a programmer would

write by hand in other systems.

A "constraint" is a relationship among objects that is declared once and then maintained by

the system. For example, the programmer can specify that the size of the rectangles in Figure 1

depend on the size of the string. Then, if the string changes, the system automatically

recalculates and redraws the other objects. Graphical applications are full of these kinds of

relationships, and a constraint system frees the programmer from having to write code to

maintain them. Garnet uses a "one-way" constraint system, which means that, for example,

changing the string in Figure 1 will resize the rectangle, but resizing the rectangle will not affect

the string. This is somewhat like the formulas in spreadsheets. Other graphical systems, such as

ThingLab [Sannella 93], have used a multiway constraint system. Since Garnet integrates

constraints with the lowest-level object system, constraints are used ubiquitously throughout the

Garnet widget set and all Garnet applications. For example, the standard Garnet button shown in

Figure 1 contains 43 constraints in its internal implementation. A large Garnet application might

have 20,000 constraints. Although many research systems have demonstrated that the speed of

constraint solving is not a problem, we have discovered that the space overhead prevents them

from being practical at this level. The fourth innovation discussed in this paper is that we have

developed a technique to eliminate many of the constraints at run time.

2. Related Work

A number of graphical object systems provide structured graphics as options, including

InterViews [Linton 89] and CLIM (McKay 911. The widgets in toolkits like Motif and

OpenLook are retained objects, but the lower-level graphical primitives such as rectangles are

not. The Open Software Foundation has recently requested proposals for a structured graphics

implementation which Motif programmers can optionally use. The only freely-available system

besides Garnet that tried to make ubiquitous use of retained objects is the Glyphs system for

InterViews, but that was only applied to text characters [Calder 90]. The virtual aggregates idea

presented here can be viewed as extending Glyphs to arbitrary graphical objects.

Constraints have been used in many experimental simulation and user interface development

environments [Borning 86], including Sketchpad [Sutherland 63], Thinglab [Borning 81], Grow

[Barth 86], Peridot [Myers 88], and Apogee [Henry 88]. Many of these systems discuss the
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time efficiency of their constraint satisfaction. For example, algorithms from the University of

Washington have been measured on a number of individual examples [Sannella 93]. However,

there has been little attention to the space efficiency of constraint algorithms for graphical

interfaces, nor how to make them practical for use in large-scale applications. Furthermore, no

previous system has provided for the automatic elimination of unneeded constraints. This may

account for the lack of constraint satisfaction in any commercial user interface development

environments.

3. General Efficiency

When we decided to devote some serious effort to making Garnet more efficient, we first

performed a large number of small optimizations to the code. While these individual changes

were not very interesting research, they did have a dramatic effect on the system's performance.

Most of these changes were invisible to the toolkit users.

We recognized early that the speed of constraint satisfaction is of paramount importance.

Through extensive engineering, excellent constraint solving times were achieved. For example,

a typical constraint in our current system is that the left of an object should be 10 pixels from the

left of another object, which is expressed as:
(+ 10 (gv OBJ :left))

Re-evaluating this constraint takes 115.9 microseconds on a SPARC ELC under Allegro

Common Lisp V4.0. 1.

Other optimizations included:

"* A number of key operations previously were implemented with macros which
expanded into enormous files. By changing to procedures instead, the size of the
code binaries was reduced by 70%.

"* By carefully optimizing the space used by objects, we reduced the storage
requirements by 40%.

"* The debugging and type-checking code was surrounded by compile-time switches,
so that it could be optionally eliminated from delivered systems.

"* Some places that used linear searches through what turned out to be very large lists
were replaced with more efficient hash tables.

"* Although Lisp automatically handles garbage collection, it is sometimes faster to
use explicit free lists for structures that are no longer in use and only "cons" when
the free list is empty.

"* Careful study of the X/l 1 graphics calls revealed operations that were much more
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expensive than expected, and these were moved out of inner loops.

The combined result of these changes was that the new version of the system used about half

as much memory and ran between two and ten times as fast, not including the further

optimizations discussed below.

4. Eliminating Constraints

As real applications were created with Garnet, we discovered that the primary problem was

that they required too much memory. Analysis showed that a typical object was using about

1,000 bytes, of which over half was used to store constraints. I

Our first attack was to try to reduce the size of the constraint data structures. The constraint

expressions were already shared among objects (in the above example, the code to perform (+

10 (gv OBJ :left)) is stored in the prototype constraint, and inherited by all its

instances). The remaining space overhead is used to keep track of where the constraint is used

and the objects it references. Much of the space is used to mark the objects that the constraint

depends on, so that when their slots are set, the constraint will be re-evaluated. In the example

above, the : left slot of OBJ must be marked with a pointer back to the constraint.

The key observation in reducing the space requirement is that most constraints are evaluated

once and never change again. For example, many constraints in the text button of Figure 1

calculate sizes based on the particular string displayed. If this string never changes, then the

constraints for the width and height of the rectangles never need to be re-evaluated and can be

replaced with their computed values. Unfortunately, the system cannot know if something the

user might do could cause the string to change. But the user interface designer might know that

the string cannot change. Therefore, we allow the programmer to declare which slots of objects

are constant. From this, the system can determine which constraints depend only on slots

marked constant, and eliminate the constraints after evaluating them the first time. This process

is applied recursively so that constraints that depend on other constraints which are constant are

also removed. It takes much less space to store the computed values instead of the constraint

since the reference to the constraint expression and back pointers from the dependent slots are no

1A typical object has 20 slots (instance variables), each of which requires about 2 "cons" cells, and in Allegro,
each cons cell requires 8 bytes. Thus, we would not expect to get objects smaller than about 300 bytes.
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longer necessary.

4.1 Constant Declarations

To declare slots of an object to be constant, the programmer lists the slots in the special

constant slot of the object. For example, for the text button, the programmer might specify:

(:constant '(:string :left :top))

to indicate that the string and position will not change.

The typical object in Garnet has a large number of slots which serve as parameters. For

example, the text button object has twelve: :LEFT, :TOP, :STRING, :SHADOW-OFF-

SET, :TEXT-OFFSET, :GRAY-WIDTH, :FONT, :TOGGLE-P, :FINAL-FEED-

BACK-P, : SELECTION-FUNCTION, :VALUE, and :VISIBLE. All these parameters are

available to customize the appearance and behavior of the button for particular applications, but

they are rarely changed after the object is created. It would be annoying to have to list all of

these slots as constant for every object, so we provided a short-cut. Each object has a set of

:may-be-constant slots, and the programmer can specify ( :constant T) to mean all

those in the may-be-constant list. This list is defined at the prototype level and applies to all

instances, so all built-in widgets will already provide the may-be-constant list. If only a few

slots will change, then : except can be used:
(:constant '(T :except :left :top))

Additional slots can be listed in the :constant list that are not included in the may-be-

constant list:
(:constant '(T :my-own-slot))

The may-be-constant slots for the built-in widgets are those that will, if constant, eliminate all

constraints except those that allow the widget to operate with the mouse and keyboard. For the

text button, a value of ( :constant T) will only leave intact the constraints that cause the

"floating" rectangles to move onto the shadow when pressed with the mouse (Figure 1).

Because the constant slot determination is applied recursively, all internal constraints are

eliminated while preserving information-hiding. A programmer creating an object does not have

to worry about declaring constant the slots internal to the object or in sub-objects if these have

constraints connecting them to top-level parameters. Similarly, users of widgets only have to

know about the top-level parameters.
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4.2 Space and Time Savings

Constant declarations have resulted in a significant space reduction in applications. For the

single button in Figure 1, ( :constant T) eliminates 30 of the original 43 constraints.

Because about half of the space was used for constraints, this results in a space savings of 27%.
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Figure 2: SURF-HIPPO system which uses constants to eliminate 53% of the constraints
(Picture courtesy of Lyle J. Borg-Graham at MIT).

In a large-scale application, we find the savings to be significantly more dramatic. For

example, in Lapidary [Myers 89], an interactive tool in Garnet, the number of constraints

dropped from 16,700 to 6690 (a 60% drop). In the Gilt interface builder, the number of
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constraints drops from 6,454 to 2,562 (also 60%) and the size of the application drops by 30%.

External users of Garnet have also found constant declarations to help. In the SURF-HIPPO

neuronal simulator package from MIT (Figure 2), 53% of the constraints were eliminated (from

2949 down to 1394), for a space savings of 11%.

In addition to the space savings, there is also a significant time savings as well. In many

applications, much of the execution time, especially at start-up, is spent on memory allocation.

This is true for other constraint systems as well. It was reported that in DeltaBlue, the time to set

up the constraint networks is dominated by the storage allocation time [Sannella 93]. Constant

constraints help reduce this time. When a constraint depends only on constant slots, space is

never allocated for it, which saves time. Furthermore, the back dependency pointers do not have

to be set up. The result is that the evaluation of the constraint is about 12% faster.

Garnet, like most constraint systems, keeps a "cached value" with each constraint so that

when nothing the constraint depends on has changed, it does not have to be re-calculated.

However, slot accesses must still check that the cache is valid. When a constraint is eliminated

because it depends only on constant slots, a procedure call containing the validity check can be

converted into a direct memory access. The resulting slot access therefore is 63% faster (7.7

microseconds instead of 20.6).

4.3 Implications

There are some interesting implications of this design for constant slots. First, it is an error to

try to change the value of a slot which has been declared constant. This makes sense since the

constraints that depend on the slot have been eliminated, so setting the slot will not be noticed by

the rest of the system. For example, in the text-button, setting the left of the button aggregate

will not change the lefts of the component rectangles if the constraints in the rectangles have

been eliminated. If the programmer tries to change a constant slot, the error raised by the system

is "continuable" so that the constant value can be overridden in the debugger. Interactive tools,

such as Garnet's Object Inspector, allow the slots to be set but print a warning that the desired

results will probably not occur.

The second implication is that it is not possible to declare that a slot should change from being

constant to not constant. Typically, slots are declared constant when objects are created, and

constraints are thrown away after they are evaluated the first time. Changing a slot's status back
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r--_ 1 i-_--.--.=---• BUTTON-AGG-148 :
I :shadow SHADOW-149

* :border GRAY-RECT-150
I B label LABEL-TEXT-152* II

:frame WHITE-RECT-1 51

*SHADOW-149 LABEL-TEXT-152
'-:parent N-AGG-148 :parent BUTTON-AGG-148 -

:fillin style BLACK :string "Label

:width 30
GRAY-RECT-150

t--:parent BUTTON-AGG-148 WHITE-RECT-151

:filling-style GRAY :parent BUTTON-AGG-148 .
:filling-style WHITE
:width (formula

(+ 10 (gvl :parent
:label
:width)))

==> 40

Figure 3: The indirect references in the button hierarchy.

to not constant would entail restoring the old constraints that originally depended on it. But all

the information about which constraints depended on the slot has already been eliminated.

Saving the space used by the constraints and the dependencies is the whole point of the constant

mechanism, so it would be counterproductive to store the information needed to make slots no

longer be constant.

A related implication is that slots declared constant in an object must be constant in all

instances of that object. Since Garnet is a prototype-instance system [Myers 92], any object can

be the prototype of another object, even if it is displayed on the screen. Consider making an

instance of the text button in Figure 1. Normally, each rectangle in the instance would inherit the

constraints for its width and height from its prototype object. But if the string was declared

constant in the prototype, then the constraints for the rectangles were thrown away in the

prototype, and the instance can only inherit the actual values.
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4.4 Design Issues

'i he original idea for constants seemed simple, but we discovered many interesting problems

when we tried to implement them.

4.4.1 Constant Indirect References

When we first declared slots constant, virtually no constraints were removed because Garnet

uses indirect references in most constraints [Vander Zanden 91]. Indirect references were

invented to allow feedback objects to use relationships such as "I am the same size and position

as the selected object." Such constraints are expressed with expressions such as:
(gvl :selected :width)

where the feedback object's :selected slot is set with the appropriate object at run time.

Changing the value of the : selected slot would cause all the constraints that depend on it to

be re-evaluated, fetching the size and position of the new selected object.

However, indirect references are also used to refer to objects in the aggregate hierarchy. In the

text button, each of the rectangles is attached to the parent aggregate, and dependencies are

established among the components of the button. For example, the constraint in the width of the

white rectangle might be
(+ 10 (gvl :parent :label :width))

which goes to the parent of the rectangle, which is the button aggregate, and then down to the

label part, to get its width (see Figure 3).

The problem is that the constraint system does not necessarily know which indirections are

constant. Clearly the indirections through the : selected slot should not be constant, since the

constraints are designed to be re-evaluated frequently. Even if the width of each selected object

was constant, the different selectable objects might have different widths. So the intermediary

selected slot should prevent the constraint from being eliminated.

On the other hand, the aggregate hierarchy usually does not change after the parts of the

aggregate have been created. In this case, we found it is appropriate to declare that the pointer

slots in the aggregate hierarchy were constant. For the button, the :shadow, :border,

label, : frame, and :parent slots will always contain the same objects, so these slots

are declared constant by the system as they are created. By declaring the intermediary slots

constant, the width of the white rectangle will become constant whenever the label's width is
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constant. These constant declarations are added automatically by the system.

4.4.2 "Constant but Different"

After solving the problem of indirect references in the aggregate hierarchy, a conflict arose

concerning inherited constants. As discussed in Section 4.3, slots that are declared constant in an

object must logically be constant in any instances of that object. Since the :parent and other

pointer slots are declared constant in the text button prototype, these slots will be constant for all

instances of the text button.

Unfortunately, we do not want to inherit the same values for the :parent and : label slots

that were set in the prototype. We do want them to be constant in the instance, but we want them

to have different values. That is, we want the : parent of the rectangle instances to point to the

appropriate button instance, not to the button prototype. To solve this problem, the system

internally must turn off constant checking when setting the pointer slots during instance creation,

thus allowing the instances to get the correct values. After this, the slots in the instance are

correctly marked as constant. Note that this is internal to the implementation of object

instancing, and applications need never deal with this issue.

4.4.3 Dependencies on System Information

Other constraints that we expected to disappear were not eliminated because they depended on

system information which we had not declared constant. For example, the size of a string

depends on its text, and also on the size of the characters in the font. Therefore, we had to

declare the size of characters in the font objects as constant. If we did not do this, then virtually

none of the constraints in the button would be eliminated, since most depend on the size of the

string.

However, the size of characters is not necessarily constant, since a Garnet image can be saved

to disk and then restarted on a different display which might have a different size for the same

fonts. To accommodate this "feature" of the X/11 graphics system, we found it was convenient

to define a control schema that contained all the information about the device running Garnet,

including the current display and information about fonts and colormap indices. The user would

then have the opportunity to declare that the display was constant, freezing all the font and color

settings, and propagating formula elimination throughout all text and color objects in the system.

If the user planned to change the display, then these settings would not become constant by
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default, and would be recomputed as required. Storing the control information in a Garnet

schema allowed the usual constant declarations to be performed on even these esoteric aspects of

the application.

4.4.4 Dynamically Changing Components

Another problem is how to allow interactive tools to edit objects with parts declared constant.

Garnet contains a number of interactive editors, including the Gilt interface builder for laying out

widgets, and Lapidary for designing application-specific graphical objects. The interfaces

generated by these tools should use constant declarations, but while the interface is being edited,

nothing should be constant. Therefore, the tools have to be careful to turn off constant

processing for the created objects. This prevents any constraints from being thrown away. We

do not want to turn off constants altogether, however, since the tools' own widgets should still

have their constant constraints eliminated.

4.4.5 Determining the Constants

A final problem is that it is difficult to determine all the right places to put constant

declarations. If you declare a slot to be constant that should not be, the system will complain

when the slot's value is changed. However, slots that should be declared constant but are not

simply waste space. Therefore, we developed a tool which suggests which slots might be

declared constant. The designer runs the procedure (RECORD-FROM-NOW) and then exercises

everything in the interface that can change (pushes every button, moves every object, etc.).

Then, (SUGGEST-CONSTANTS) will check which constraints were not re-evaluated since the

last (RECORD-FROM-NOW), and trace them back to a small number of top-level slots that they

depend on. If these were to be declared constant, then the constraints would be eliminated.

Typically, extra slots are listed since the designer will usually forget to operate some part of the

interface (e.g., not hitting the "quit" button, or not changing the sizes of windows), which is why

the process cannot be fully automatic. These tools have been useful in our own investigations,

since we have discovered many internal constraints that should have been eliminated. For

example, since there is no top-level parameter which controls the color of the button in Figure 1,

the internal rectangles should have their colors defined as constant as part of the widget

implementation. Some of these declarations were originally missed.
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4.5 Implementation Details

Following the declarative philosophy of the system, constant slots are declared by setting the

value of the :constant slot, as described above. For efficiency reasons, however, this

information is converted internally into a bit associated with each slot. Because object slots

already have a set of bits that describe their status, it was easy to add a bit to indicate what slots

are constant. When a constraint is evaluated, the algorithm simply checks the constant bits of the

depended slots.

The algorithm that determines whether a constraint can be eliminated works as follows. The

first time a constraint is evaluated, the algorithm initially assumes that the constraint is constant.

While the constraint is evaluated, it will typically access slots. If a slot is accessed which is not

(recursively) declared constant, the algorithm notes that the constraint cannot be eliminated,

since its value would change if the slot changed. The algoritL. -hen stops checking for

constancy. If, however, all slots used by the constraint are constant (or if the constraint does not

access any slots), the algorithm proceeds to eliminate the constraint. During the elimination

process, the system replaces the constraint with the value it had computed, and marks the slot in

which the constraint resides as constant.

To avoid unnecessary dependencies, which are costly both in terms of time and space, the

algorithm is careful not to set up dependencies to slots that are declared constant. This has two

advantages. First, if a constraint is eventually eliminated because it only depends on constant

slots, no dependencies are actually created. Second, even if the constraint is not eliminated, only

useful dependencies are recorded; dependencies to slots that are constant, and hence cannot

change the value of the constraint, are never created.

5. Large Data Sets

Although many systems provide a structured graphics model as an option, Garnet is one of the

few user interface development environments which actually requires applications to use the

model. In other environments, applications with large amounts of data typically use their own

more efficient representation to avoid the overhead of the generic structured graphics model.

Unfortunately, this severely decreases the utility of the development environment, which was

meant (at least in part) to hide such low-level details from the developer. Thus, developers of

these applications face a difficult trade-off between ease-of-deveiopment ane fficiency of the



Makins Structured Graphics and Constraints Practical for Large-Scale Applications -14

final application. In Garnet, we explored a number of techniques to greatly reduce this trade-off

for applications with large amounts of data.

5.1 Layout Hints

The first step towards efficiently handling large data sets is to allow the developer to declare

certain information about the layout of the data. This is used to speed up detecting which objects

are underneath the mouse, and computing which objects need to be redrawn when a,, of

the window is uncovered. For example, most graphical editors provide grid dots - . .,trge,

static collection of non-overlapping dots in a regular two-dimensional pattern. Without hints, the

graphics system must treat these dots like any other objects. With hints, however, the graphics

system can represent the dots in a two-dimensional array, resulting in significantly better times.

The layout hints we have found useful include:

*:two-dimensional - When objects are in a regular rectangular two-
dimensional layout, it is best to store them in an array. The test for intersection then
become trivial computations based on the origin and dimensions of the array and the
distance between elements. To be more precise, this computation selects the
candidate objects which then are sent the appropriate intersection method call (since
the objects might not be rectangular and fill their bounding-boxes). We are also
considering a : sparse hint, when many entries in the array are empty.

: one-dimensional - This is a proper subset of the two-dimensional case, and
is handled by the same code. However, it occurs frequently enough in applications
to warrant its own declaration. Examples of one-dimensional data are long menus.

e : non-overlapping - In general, graphical objects are allowed to overlap each
other. This complicates intersection testing, as such tests must preserve the ordering
of the objects. Furthermore, if the test is for a mouse click, the proper ordering is
front-to-back, but if it is for redrawing, the proper ordering is back-to-front. When a
object is changed, overlapping objects must also be redrawn. If the graphics system
is told that a collection of objects do not overlap, then it can use this to streamline
those operations. A further issue here, and one which we have not fully resolved, is
the precise definition of "non-overlapping" - does this mean that objects in the
aggregate do not overlap other objects in the aggregate, or that they do not overlap
any other objects in the window? This may be resolved by declaring the latter case
with another hint, such as :topmost.

: large-set - In the absence of regularity in the data, it is still helpful for the
graphics system to know that there is a large data set. In this case, it can replace its
internal linear data structures with those better-suited for large-scale intersection
testing. An excellent review of quad-trees, R-trees, and other related data structures
can be found in [--- 89]. Ideally, we would prefer for Garnet to automatically detect
when to use such data structures. However, experience has shown us that these data
structures are too costly to use in the general case, and that the point at which they
become cost-effective is highly application-dependent. Furthermore, even the
testing to identify this trade-off point is quite expensive. Thus, it appears best for
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now to let the developer provide the : large-set hint.

: static - Finally, the general representation must allow for efficient addition,
removal, and modification of objects to the set. If the graphics system is told that
the set is static, however, then it can select a representation which is very costly to
modify, but which optimizes the intersection testing.

5.2 Virtual Aggregates

Although the layout hints can greatly improve the time performance of the graphics and events

systems, they have only a small impact on the space efficiency (in the : two-dimensional

case, an array is used instead of a list, for a small space savings). Thus, the scalability issue is

not yet resolved. To illustrate the problem, consider a l00xl00 array of grid dots. In a true

structured graphics model, each "dot" must be a first-class object in the underlying object

system, complete with all the instantiated slots, methods, and local data. In Garnet, this amounts

to well over 500 bytes per object, or over 5 megabytes just for the grid dots. Even in systems

which have a lower per-object size, this clearly becomes a critical concern for large data sets.

When object creation, garbage collection, and disk swapping times are added in, this increased

space also dominates the time performance of the system.

The second step towards efficiently handling large data sets is to resolve the space issue. A

key observation is that almost all applications with large amounts of data represent that data with

very few different types of graphical objects. For example, a CAD drawing might contain many

thousands of gates, but these might all be instances of AND, OR, and NOT gates. Similarly, a data

visualization might represent thousands of data points, but each point might be represented by a

circle or a square. Furthermore, while the positions vary by instance, almost all other parameters

remain constant for all the objects. In the visualization case, perhaps the color of the circles is

used to convey some information, but the radius, the visibility, the draw-function (xor, copy,

etc.), and so on remain constant.

To support these applications, we have developed virtual aggregates. Like a normal

aggregate, a virtual aggregate contains a collection of first-class objects. However, in this case

they serve as prototypes for the aggregate's components. It is important to note that the

prototypes can be arbitrary Garnet objects, even aggregates, and they can be created with

interactive tools or using the declarative syntax.

A component of a virtual aggregate is not a first-class object, however, but just a pointer to its
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prototype and a list of the parameters which are unique to that component. In the visualization

example, a component might be
(circle, :left=50, :top=20, :color=red]

If the layout hint is that it is two-dimensional, the : left and : top parameters are computed

for each component so they do not need to be specified. Thus, in a chess board, a component

might be [square, :color=black], or if two prototypes were supplied, perhaps just

(black-square]. Finally, if the virtual aggregate has a single prototype, then the

components do not need to specify one. Thus, in the case of the grid dots, since there is a single

prototype and there are not parameters for the components, there is zero per-component storage.

The one major technical obstacle to virtual aggregates lies in simulating first-class behavior in

the virtual components. While this requires a complete virtual analog to the real object system.

we have found that only a small subset of the object system's functionality is required for most

applications of virtual aggregates. This set is mainly restricted to:

9 Invalidation - When a parameter to a virtual component is changed, the graphics
system must determine the appropriate part of the screen that needs to be refreshed.
Therefore, the bounding box of the affected component is stored (or computed for
two-dimensional virtual aggregates). Furthermore, the virtual component is marked
so that it will be re-evaluated based on the new values of the parameters.

* Inheritance - When a parameter is not specified for a virtual component, it is
inherited from the prototype. Therefore, when a parameter to the prototype is
changed, all of the virtual components which inherit this parameter must be
invalidated and redrawn.

"* The Draw and Point-in-Object methods - When a virtual component needs to be
redrawn, it is sent a Draw message. Similarly, the Point-in-Object method
determines when a mouse click is in the object. It is highly desirable that these
methods be inherited from the prototypes (that is, that the user does not have to
write special methods for every prototype of a virtual aggregate). This presents a
difficulty, however, as these methods were not originally defined with virtual
objects in mind. For example, the built-in Draw method for circles presumes that it
is acting over a real circle object, and makes real object system references to the
slots and local data of the circle. Our solution is to allocate one special instance of
each prototype. When we need to invoke a method on a virtual component, we set
that component's values into the special object, and call the method on the special
object.

"* Point-to-Component method - Similarly, the virtual aggregate itself must be able
to take a location on the screen and return the virtual component (if any) which
contains the point. Virtual aggregates provide this by first determining their
candidate objects (possibly using the layout hints), and then sending each of these a
Point-in-Object method using the special object. If a component is found,
then the special object is returned with its values set based on the parameters for that
component. This could be dangerous because the returned object can only be used
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until the next time Point-to-Component is called. Since there is only one
object, it is illegal to store pointers to the object returned by
Point-to-Component. In practice, this has not been a problem, and the
Interactors input system of Garnet [Myers 90b] can be used with Virtual Aggregates
without change.

* Constraints -- It is also highly desirable to allow the prototype to contain
constraints in some of its slots. For example, if each virtual component included a
: temperature parameter, then the prototype's : color slot might be defined by
mapping the temperature value over the spectrum of available colors. The array of
values for the virtual aggregate would then contain temperature values. In this way,
changing the temperature of a virtual component will result in its color changing on
the screen. The difficulty here lies not in defining constraints, but in maintaining
them. For example, when a temperature changes, the object system must detect that
the color must be recomputed. Complete handling of this step would require
backpointers with each parameter of every virtual component to every slot
constrained to that parameter. This would be very expensive, both in time and
space, and contrary to the purpose of virtual aggregates. For internal constraints,
from one slot of a component to another slot of the same component, it is not
necessary to set up any dependencies, since no values can change unless the
parameters change, and we can already detect when the parameters change. For
external constraints (from a component to the virtual aggregate itself or from a
component to an external object), we make the restriction that the calculated
dependencies not change with each component. 2 Therefore, we can use the
dependencies calculated for the single special extra object associated with each
prototype to determine when all the components associated with that prototype need
to be recalculated and redrawn. We do not allow constraints from one virtual
component to another.

5.3 Space and Time Savings

The time savings due to layout hints can be quite dramatic. This can be difficult to quantify,

however, because performance without layout hints critically depends on the sophistication of

the programmer. For example, consider the 38x38 grid in the pixmap editor shown in Figure 4.

The most naive approach is to place all 1444 rectangles within a single aggregate, thus requiring

1445 intersection tests for each mouse click and each screen modification. On a Sparc 2 running

Allegro Common Lisp V4.0.1, this approach yields a paltry 2.3 pixel color changes per second.

A better approach would place each column in its own aggregate, reducing the tests from 1445 to

77, and improving performance from 2.3 to 22.3 edits per second. This process can be

continued, with a very complex aggregate structure reaching nearly 40 edits per second.

2Since Garnet allows arbitrary Lisp code in constraints, it is possible to write a constraint expression that
computes the objects referenced, so each component could conceivably have a different dependency set. This is not
allowed in external constraints for virtual aggregates.



Making Structured Graphics and Constraints Practical for Large-Scale Applications - 18

Achieving this level of performance, though, requires the programmer to simulate a k-d tree with

aggregates. Instead, if the objects are all placed in one aggregate, as in the most naive case, but

the :two-dimensional layout hint is supplied, then tests are reduced from 1445 to 2, and

performance jumps to 134 edits per second. This is 57 times faster than the naive case and over 3

times faster than the simulated k-d tree. In general, the actual savings from layout hints also

depends on which hints are supplied and varies proportionally with the size of the data set.
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Figure 5: A mesh created using a virtual aggregate for the polygons and another virtual
aggregate for the square knobs. (Picture courtesy of Kenneth Meltsner of General
Electric [Meltsner 91].)
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Figure 6: A gauge created in Garnet with the Motif look-and-feel. This contains 38 objects:
10 aggregates containing 10 and lines and 10 strings for the tics, I aggregate for the
collection of tic marks, 1 semi-circle, I baseline, 2 polylines for the needle, 2
strings for the captions, and 1 aggregate for the gauge itself.
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create and initialize 1445 objects. Because of this, the start-up time for the application is

reduced by 73%, from 15.3 seconds to 4.1 seconds. Similar savings are observed when quitting

the application. Finally, we might expect the running time of the application to get worse, as

there is the extra cost of installing the parameters into the special object before the draw method

is called. This, however, is more than offset by other optimizations, such as caching the Draw

methods. In fact, using virtual aggregates improves the running time of the pixmap editor from

134 to 142 edits per second, or by 6%. Thus, overall, using a : two-dimensional layout hint

and a virtual aggregate, the pixmap editor runs between 4 and 60 times faster while consuming

1/50th of the space.

Virtual aggregates have proven useful to Garnet's users. One example is shown in Figure 5.

6. Compiling to Draw Methods

Another reason that Garnet uses lots of objects is that all widgets must be composed of

primitive objects. Thus, every button (Figure 1) contains five objects: three rectangles, a string,

and an aggregate object that holds them together. The Motif-like circular gauge widget shown in

Figure 6 uses 38 objects with 292 constraints. The advantage of using individual primitive

objects for these widgets is that they can be defined with the declarative style, so it is easier to

modify and edit with interactive tools like Lapidary. The disadvantage is the enormous space

and time overhead of all the objects; the gauge takes 56,808 bytes with no constants defined, and

30,744 when constant constraints are eliminated (which leaves 19 constraints). Although the

46% decrease in size is impressive, the resulting object is still huge.

In other systems, the designer would instead have to write a custom draw method for the

gauge, and methods to handle the input events. However, we did not want to force people using

Garnet to give up the declarative style of programming. Therefore, we provide a function that

will take a composite object and create the custom draw method automatically.

The function takes an existing object, and creates a new object whose draw method is a

combination of the draw methods of all the former component objects. Any constraints that

refer from within the object to external objects are retained, but all constraints among the internal

objects are removed and replaced with expressions in the draw method code. When any

parameters to the processed new objects change, the entire object is redrawn. Thus, for the

gauge, the entire object is redrawn when the user moves the needle. Therefore, it is more typical
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for the programmer to process objects into parts that change independently. Furthermore, the

input handlers that operate on the gauge need objects to work on. For example, the gauge uses a
"rotate-interactor" attached to the needle to allow the user to change the value. If we eliminated

the needle object, there would not be anything for the 1nteractor to work over. Therefore, the

programmer would probably combine the 38 objects into 3 new objects: one for the background

including the tic marks, one for the needle, and one for the feedback text that shows the current

value. Because these processed objects appear to the rest of the system to be the same as regular

objects, the conventional Interactors will still work without change. For the button of Figure 1,

the entire button changes when pressed anyway, so a single composite object with one draw

method can be used.

The space and time savings are enormous. The gauge as a single object takes only 2712 bytes

(down from 56,808, a savings of 95%). The speed savings is also significant. The new gauge

can be drawn in only 63 milliseconds (compared with 124 milliseconds for the original, down by

a factor of 2). The time savings comes from not having to allocate the memory for the

component objects, not having to evaluate the constraints and maintain the dependencies, and not

having to do the tree traversal to find all the objects to be drawn.

Constants can be used with the processed objects also, so that the gauge as a single object with

everything declared constant only takes 2152 bytes (a savings of 20%). If the constants are

declared before the new object is created, then the constraints would have been replaced with

values, so the generated draw-method will contain values, not even expressions. This eliminates

much of the computation from the drawing (such as the trigonometry), so the drawing time is

only 41.1 milliseconds (35% faster).

This technique cannot be used when external objects have constraints to internal parts of the

aggregate. However, most widgets provide all parameters at the top level, so this is rarely a

problem. Another restriction is that the structure of the new object is fixed. For regular

aggregate objects, programmers can replace and edit parts on the fly, for example to create a

gauge that uses a different kind of indicator, or that has pictures as markers. Once the custom

draw method is created, however, this flexibility is lost. The user can always re-load the

original full-aggregate version, modify it, and then call the make-draw-method function on the

modified version.
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Objects with their custom draw method can be written to a file and compiled, so in the future,

it will draw more quickly. In addition, instances of the new object can be created. When saving

objects using interactive tools like Lapidary and Gilt, the programmer can choose whether to

convert the aggregates to draw methods or to use the conventional declarative syntax, depending

on whether structural changes will be necessary at run-time.

7. Status and Future Work

The virtual aggregates and constant constraints have been released to Garnet users, and have

allowed a number of large-scale application to be created. The compiling-to-draw methods will

be released with the next version. We are always looking for new ways to make the system more

efficient and effective. In the future, we will explore providing built-in support for "layers,"

where an entire set of objects is being used as a background, and may never change. An example

might be a map. It may be more efficient to store the layer as a pixmap, rather than as a set of

objects. Another area of research is more automatic ways to detect and eliminate slots that are

constant, rather than requiring explicit declarations. It would be interesting to apply the constant

constraint elimination to a multi-way constraint system such as Delta-Blue [Sannella 93].

The techniques described here have allowed structured graphics and constraints to be used for

applications containing tens of thousands of objects and constraints. This demonstrates that it is

not necessary to give up the advantages of automatic maintenance and significantly reduced

developer effort, in order to have sufficient time and space performance. Although the

techniques were described in the context of the Garnet system, they can be applied to other

systems using structured graphics or constraints.
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